On a Problem of Chebyshev

W. J. Studden*
Purdue University, West Lafayette, Indiana 47907
Communicated by John R. Rice

Received January 18, 1980

DEDICATED TO THE MEMORY OF P. TURÁN

1. Introduction

The classical problem of Chebyshev referred to in the title concerns the best approximation of a power x^{n} by a polynomial $Q_{n-1}(x)$ of degree $n-1$, using the sup norm over the interval [-1, 1]. The resulting polynomial $x^{n}-Q_{n-1}(x)$ is the Chebyshev polynomial of the first kind $T_{n}(x)=\cos n \theta(x==\cos \theta)$ with leading coefficient set equal to one. The problem considered here is to approximate the powers $x^{8+1}, s^{s+2}, \ldots, x^{n}$ simultaneously using the lower terms $1, x \ldots, x^{s}$. Let $f^{\prime}(x)=\left(1, x, \ldots, x^{n}\right)$ (primes will denote transposes), $f_{1}^{\prime}(x)=\left(1, x, \ldots, x^{5}\right)$ and $f_{2}^{\prime}(x)=\left(x^{s+1}\right.$, $\left.x^{s+2}, \ldots, x^{n}\right)$. Further, let Q be an arbitrary $(n-s) \times(s+1)$ matrix and A be a positive definite $(n-s) \times(n-s)$ matrix with a fixed value, say 1 , for its determinant. It is required to find the value of both Q and A which will minimize the supremum over $[-1,1]$ of

$$
d(x: Q, A)=\left(f_{2}(x)-Q f_{1}(x)\right)^{\prime} A\left(f_{2}(x)-Q f_{i}(x)\right)
$$

Note that when $s=n-1$ we have the original problem of Chebyshev. The solution to the generalized problem arose from a problem in the optiona? design of experiments. It is arrived at fairly simply using certain "canonical moments" of measures on $[-1,1]$. The simplicity of the solution seems to require minimizing over the matrix A as well as the polynomial part Q.

A solution to the original problem using the canonical moments is described in the Section 2. Section 3 describes the general soletion. Some examples are considered in the final section together with some properties of the general solution.

[^0]
2. Solution of Original Problem

In this section we give a solution to the original problem using canonical moments. Let q denote a vector of dimension $n+1$ with a 1 in the last component. The problem is then to minimize

$$
\begin{equation*}
\sup _{x \in[-1,1]}\left|q^{\prime} f(x)\right|^{2} \tag{2.1}
\end{equation*}
$$

with respect to q. If ξ denotes an arbitrary probability measure on $[-1,1]$ then (2.1) may be replaced by

$$
\sup _{\xi} \int\left(q^{\prime} f(x)\right)^{2} d \xi(x)=\sup _{\xi} q^{\prime} M(\xi) q
$$

where $M(\xi)$ is the $(n+1) \times(n+1)$ matrix with elements

$$
m_{i j}=\int x^{i+\jmath} d \xi(x), \quad i, j=0,1, \ldots, n
$$

Using game theoretic arguments it may be shown that

$$
\rho=\inf _{q} \sup _{\xi} q^{\prime} M(\xi) q=\sup _{\xi} \inf _{q} q^{\prime} M(\xi) q
$$

Letting $e^{\prime}=(0, \ldots, 0,1)$ it then follows that

$$
\begin{aligned}
\rho^{-1} & =\inf _{\xi} \sup _{q} \frac{\left(e^{\prime} q\right)^{2}}{q^{\prime} M(\xi) q} \\
& =\inf _{\xi} e^{\prime} M^{-1}(\xi) e .
\end{aligned}
$$

The last equality uses Schwartz's inequality. Note for later reference that equality is achieved for the supremum over q if and only if

$$
\begin{equation*}
q=M^{-1}(\xi) e / e^{\prime} M^{-1}(\xi) e \tag{2.2}
\end{equation*}
$$

The problem is now to minimize

$$
\begin{equation*}
e^{\prime} M^{-1}(\xi) e=\frac{\left|M_{11}(\xi)\right|}{|M(\xi)|} \tag{2.3}
\end{equation*}
$$

where $|M(\xi)|$ and $\left|M_{11}(\xi)\right|$ are the determinants of $M(\xi)$ and

$$
M_{11}(\xi)=\int f_{1}(x) f_{1}^{\prime}(x) d \xi(x)
$$

The two determinants involved and their ratio have a simple expression in terms of the canonical moments of ξ. For any probability measure ξ on $[-1,1]$ let $c_{i}=\int x^{i} d \xi(x), i=0,1, \ldots$. Now let $c_{k}{ }^{+}$denote the maximum
value of the k th moment over measures μ having the same first $k-1$ moments as ξ. That is, consider those μ on $[-1,1]$ with $\int x^{i} d \mu(x)=c_{i}$ for $i=0,1, \ldots, k-1$; then $c_{k}{ }^{+}=\sup _{\mu} \int x^{k} d \mu(x)$. Similarly let c_{k}^{-}denote the corresponding minimum. The canonical moments are defined by

$$
p_{k}=\frac{c_{k}-c_{k}^{-}}{c_{k}^{+}-c_{k}^{-}}, \quad k=1,2, \ldots
$$

Whenever $c_{k}{ }^{-}=c_{k}{ }^{+}$we leave the p_{k} undefined. If we then let

$$
\eta_{0}=q_{0}=1, \quad \eta_{j}=q_{j-1} p_{j}, \quad j=1,2, \ldots\left(p_{2}+q_{i}=1\right),
$$

the determinant $\mid M(\xi)$) is (see Skibinsky [4] or Studden [5]) a multiple of

$$
\prod_{i=1}^{n}\left(\eta_{2 \imath-1} \eta_{2 i}\right)^{n+1-i} .
$$

The ratio in (2.3) then turns out to be a constant times

$$
\begin{equation*}
\frac{\prod_{i=1}^{s}\left(\eta_{2 i-1} \eta_{2 i}\right)^{s+1-2}}{\prod_{i=1}^{n}\left(\eta_{2 i-1} \eta_{2 i}\right)^{n+1-i}} \tag{2,4}
\end{equation*}
$$

For $s=n-1$ this quantity is the inverse of

$$
p_{2 n} \prod_{i=1}^{2 n-1} p_{i} q_{i}
$$

which is maximized for

$$
\begin{equation*}
p_{i}=\frac{1}{2}, \quad i=1,2, \ldots, 2 n-1, p_{2 n}=1 \tag{2.5}
\end{equation*}
$$

(The general solution is given in (3.4) below). Now the measure with density

$$
\begin{equation*}
\frac{1}{\pi \sqrt{1-x^{2}}} \tag{2.6}
\end{equation*}
$$

has canonical moments $p_{i} \equiv \frac{1}{2}$. See Skibinsky [4] or Karlin and Studden [2, p. 120]. Since the moments $c_{0}=1, c_{1}, \ldots, c_{k}$ and $p_{1}, p_{2}, \ldots, p_{k}$ are in $1-1$ correspondence, the minimizing measure ξ_{n-1} corresponding to (2.5) has its first $2 n-1$ moments equal to those of the measure (2.6).

The solution to the original problem, namely that $T_{n}(x)$, with leading coefficient 1 , minimizes (2.1) now follows. It can be shown using the corresponding $q=q_{n-1}$ from (2.2) that the polynomial $q_{n-1}^{\prime} f(x)$ is orthogonal to x^{3}, $k=0,1, \ldots, n-1$, with respect to the measure in (2.6).

The measure ξ_{n-1} corresponding to (2.5) is an "upper principal represen-
tation" for the measure (2.6). It concentrates mass proportional to $1: 2: 2: \ldots: 2: 1$ at the $n+1$ zeros of $\left(1-x^{2}\right) T_{n}^{\prime}(x)=0$. This can be verified by noting that ξ_{n-1} provides a quadrature formula corresponding to the measure (2.6) which is exact for polynomials of degree $2 n-1$. This quadrature formula is a classical Bouzitat formula of the second kind. (See Ghizzetti and Ossicini [1].) It may also be verified by noting that the support of ξ_{n-1} must be the points where $T_{n}{ }^{2}(x)$ attains its supremum, i.e., the zeros of ($1-x^{2}$) $T_{n}^{\prime}(x)=0$. The corresponding weights at these points may be obtained by matching up the first n moments and requiring total mass equal to 1 .

3. The General Solution

As indicated in the introduction the problem now is to find the Q and A which will minimize the supremum on $[-1,1]$ of the quantity $d(x ; Q, A)$ defined in Eq. (1.1). A considerable simplification is obtained if we use some of the results from Karlin and Studden [2, p. 367, Theorem 8.1]. It is shown there that the minimizing Q and A are of a certain form. For any ξ we partition the matrix $M(\xi)$ according to f_{1} and f_{2} by defining

$$
\begin{gathered}
M_{11}(\xi)=M_{11}=\int f_{1} f_{1}^{\prime} d \xi, \quad M_{22}=\int f_{2} f_{2}^{\prime} d \xi \quad \text { and } \\
M_{12}^{\prime}=M_{12}=\int f_{1} f_{2}^{\prime} d \xi
\end{gathered}
$$

so that

$$
M(\xi)=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)
$$

The minimizing Q is shown to be of the form

$$
\begin{equation*}
Q=Q\left(\xi_{s}\right)=M_{21}\left(\xi_{s}\right) M_{11}^{-1}\left(\xi_{s}\right) \tag{3.1}
\end{equation*}
$$

where ξ_{s} maximizes the determinant of the matrix

$$
\begin{equation*}
A^{-1}(\xi)==M_{20}(\xi)-M_{21}(\xi) M_{11}^{-1}(\xi) M_{12}(\xi) . \tag{3.2}
\end{equation*}
$$

The matrix A was normalized to have determinant equal to one. The minimizing A is the matrix $A\left(\xi_{s}\right)$ suitably normalized. Since the normalization does not change the problem we can restrict the matrix A to have determinant equal to that of $A\left(\xi_{s}\right)$.

Now the identity

$$
\begin{equation*}
|M|==\left|M_{11}\right|\left|M_{22}-M_{21} M_{11}^{-1} M_{12}\right| \tag{3.3}
\end{equation*}
$$

shows that minimizing $|A(\xi)|$ is equivalent to minimizing (2.4) for general s. The minimizing measure $\dot{\xi}_{s}$ can readily be shown to have canonical moments

$$
\begin{align*}
p_{2} & =\frac{1}{2} . & & i \text { odd, } \\
p_{2 t} & =\frac{1}{2}, & & i=1,2, \ldots s, \\
& =\frac{n-i+1}{2 n-2 i+1}, & & i=s+1, s+2, \ldots n-i, \\
& =1, & & i=n, \tag{3.4}
\end{align*}
$$

One can now convert back to the measure ξ_{s}, then to the ordinary moments of ξ_{s} and then to the matrices Q and A. It is also possible to evaluate the ordinary moments of ξ_{s} used in Q and A directly from the canonical moments given in (3.4). These relationships are described more fully in Skibinsky [9] or Studden [5] and relate the power series generating the ordinary moments with its continued fraction expansion.

Let $\delta_{0}=1, \delta_{i}=q_{2 i-2} p_{2 i}, i=1,2, \ldots$ and define U_{i} recursivefy by $U_{\mathrm{Q} j} \equiv \mathrm{i}, j=0,1, \ldots$ and for $i \leqslant j$

$$
\begin{equation*}
U_{i j}=\sum_{k=i}^{j} \delta_{k-i+1} U_{i-1, k}, \quad i, j=1,2 \ldots \ldots \tag{3.3}
\end{equation*}
$$

Whenever $p_{i}=\frac{1}{2}$ for i odd the ordinary moments $c_{i}=\int x ; d$ are then given by

$$
\begin{equation*}
c_{2 i-1}=0, \quad c_{2 i}=U_{i i}, \quad i=1,2, \ldots, n \tag{3,6}
\end{equation*}
$$

The relationship between the p_{i} and the c_{i} is slightiy more involved when the symmetry producing $p_{2 i \sim 1}=\frac{1}{2}$ is not present.

The minimizing measure ξ_{s} also has a simple description, See Studden [5]. The support of ξ_{s} consists of the points ± 1 and the $n-1$ zercs of

$$
p_{n-s}^{\prime}(x) t_{s+1}^{\prime}(x)-\approx_{s} p_{n-s-1}^{\prime}(x) t_{s}^{\prime}(x)=0
$$

where

$$
\alpha_{s}=\frac{1}{2} \frac{(n-s-1)}{(2 n-2 s-1)} \quad s=0,1, \ldots \ldots-1
$$

and p_{2}^{\prime} and t_{2}^{\prime} are the derivatives of the Legendre and Chebyshev polynomiais $P_{k j}(x)$ and $T_{k}(x)$ normalized so that their leading coefficients are one. We note that $T_{k}^{\prime}(x)$ is the Chebyshev polynomial of the second kind and $P_{i k}^{\prime}(x)$, $k=1,2, \ldots$ are orthogonal to $\left(1-x^{2}\right) d x$, however we prefer to leave things in terms of P_{k} and T_{k}.)

The weights that ξ_{s} assigns to each of the zeros x_{z} of (3.7) and ± 1 are given by

$$
\begin{equation*}
\frac{2}{2 n+1+U_{2 s}\left(x_{i}\right)} \quad i==0,1, \ldots, n \tag{3.8}
\end{equation*}
$$

where $U_{2 \mathrm{~s}}(x)$ is the Chebyshev polynomial of the second kind,

$$
U_{k}(x)=\frac{\sin (k+1) \theta}{\sin \theta}, \quad x=\cos \theta
$$

4. Examples and Further Properties

As mentioned at the beginning of Section 3 the reduction of the minimizing A and Q to the form (3.1) and (3.2) is given in Karlin and Studden [2]. The same Theorem 8.1 on p. 367 also says that with the matrix A of the form (3.2) the quantity $d(x ; Q, A)$, with the minimizing $Q_{s}=Q\left(\xi_{s}\right)$ and $A_{s}=A\left(\xi_{s}\right)$, satisfies the inequality

$$
\begin{equation*}
d\left(x ; Q_{s}, A_{s}\right) \leqslant n-s \tag{4.1}
\end{equation*}
$$

For $s=n-1$ the expression $d\left(x ; Q_{s}, A_{s}\right)$ reduces to $T_{n}{ }^{2}(x)$. Equation (4.1) is then just the familiar fact that $T_{n}^{2}(x) \leqslant 1$ for $x \in[-1,1]$.

The polynomial T_{n} is orthogonal to $x^{k}, k=0,1, \ldots, n-1$ with respect to (2.6). Since the minimizing measure ξ_{n-1} and (2.6) have the same moments $c_{0}, c_{1}, \ldots, c_{2 n-1}$ it follows that t_{n} and $x^{/ k}$ are orthogonal with respect to ξ_{n-1}. There seems to be no analog to (2.6) for the general measure ξ_{s}. However if we define

$$
\left(g_{s+1}, \ldots, g_{n}\right)^{\prime}=A_{s}^{\mathbb{1} / 2}\left(f_{2}-Q_{s} f_{1}\right)
$$

then the polynomials $g_{i}, i=s+1, \ldots, n$ are orthonormal and orthgonal to $1, x_{2}, \ldots, x^{s}$ with respect to the measure ξ_{s}. See Kiefer [3] or Karlin and Studden [2].

As a specific example consider the case $n=3$. Using Eq. (3.4) we note that all the odd canonical moments are equal to $\frac{1}{2}$ while the even moments are

$$
\begin{array}{llll}
& p_{2} & p_{4} & p_{6} \\
\cline { 2 - 3 } s=0 & 3 / 5 & 2 / 3 & 1 \\
s=1 & 1 / 2 & 2 / 3 & 1 \\
s=2 & 1 / 2 & 1 / 2 & 1
\end{array}
$$

A few further calculations using (3.6) and (3.5) give the ordinary moments.

The odd moments $c_{2 i-1}$ are zero while the even moments are given by the following:

$$
\begin{array}{lccl}
& c_{2} & c_{4} & c_{\mathfrak{0}} \\
\cline { 2 - 5 } s=0 & 3 / 5 & 13 / 25 & 63 / 125 \\
s=1 & 1 / 2 & 5 / 12 & 29 / 72 \\
s=2 & 1 / 2 & 3 / 8 & 11 / 32
\end{array}
$$

Equation (4.1) for the three cases then gives

$$
s=2
$$

$$
\left(x^{3}-\frac{3}{4} x\right) 16\left(x^{3}-\frac{3}{4} x\right) \leqslant 1 ;
$$

$$
s=1
$$

$$
\binom{x^{2}-\frac{1}{2}}{x^{3}-\frac{5}{6} x}^{\prime}\left(\begin{array}{cc}
6 & 0 \\
0 & 18
\end{array}\right)\binom{x^{2}-\frac{1}{2}}{x^{3}-\frac{5}{8} x} \leqslant 2 ;
$$

$s=0:$

$$
\left(\begin{array}{c}
x \\
x^{2}-\frac{3}{5} \\
x^{2}
\end{array}\right)^{\prime} \frac{5}{4}\left(\begin{array}{ccc}
63 & 0 & -13 \\
0 & 5 & 0 \\
-13 & 0 & 15
\end{array}\right)\left(\begin{array}{c}
x \\
x^{2}-\frac{3}{5} \\
x^{2}
\end{array}\right) \leqslant 3 .
$$

For $s=0$ the measure ξ_{0} has equal mass $1 /(n+1)$ on the zeros of $\left(1-x^{2}\right) P_{n}^{\prime}(x)=0$, which for $n=3$ gives $x= \pm 1$ and $x= \pm 1 \sqrt{5}$. For $s=n-1$ the measure ξ_{n-1} has mass on the zeros of $\left(1-x^{2}\right) T_{n}^{\prime}(x)=0$, which are $x_{\mathrm{r}}=\cos (v \pi / n) s=0,1, \ldots, n$. The interior zeros have weight $1 / n$ while ± 1 have weight $1 / 2 n$ each. For $s=1$ and $n=3$ there is weight $\frac{3}{d} 0$ on $x= \pm 1 / \sqrt{6}$ and $\frac{1}{5}$ on $x= \pm 1$.
As a final remark observe that ξ_{0} and ξ_{n-1} give essentially equal weight to the zeros of $\left(1-x^{2}\right) P_{n}^{\prime}(x)=0$ and $\left(1-x^{2}\right) T_{n}^{\prime}(x)=0$, respectively. The zeros of all the classical polynomials distribute themselves according to the density given in (2.6). Therefore ξ_{0} and ξ_{n-1} both converge (weakly) to the measure with density (2.6) as $n \rightarrow \infty$. The measures ξ_{s}, which also depend on n, can be shown to lie between ξ_{0} and ξ_{n-1} so that they all converge to (2.6) uniformly in s.

References

1. A. Ghlzzetti and A. Ossicint, "Quadrature Formulae," Academic Press, New York, 1970.
2. S. Karlin and W. J. Studden, "Tchebycheff Systems: With Applications in Analysis and Statistics," Interscience, New York, 1966.
3. J. Kiefer, An extremum result, Canad. J. Math. 14 (1962), 597-601.
4. M. Skibinsky, Some striking properties of binomial and beta moments, Ann. Math. Statist. 40 (1969), 1753-1764.
5. W. J. STUDDEN, D_{s}-optimal designs for polynomial regression using continued fractions, Ann. Math. Statist. 8 (1980).

[^0]: * Research supported by NSF Grant MCS75-08235 A0:.

