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1. INTRODUCTION

The classical problem of Chebyshev referred 10 in the title concerns the
best approximation of a power x* by a polynomial @, (x) of degree
n — 1, using the sup norm over the interval [—1, 1]. The resulting poly-
nomial x™ — @, 4(x) is the Chebyshev polynomial of the first kind
T.(x) = cos n8 (x = cos ) with leading coefficient set equa! to one. The

1

problem considered here is to approximate the powers x+, g52 . x7

simultaneously using the lower terms 1, x..... x% Lot f'(x) = (1, x,.., x%
(primes will denote transposes), fi(x) = (I, x,..., x%) and f{x) = (“""
x%°2 .., x%). Further, let O be an arbitrary (7 — 5} X {5 - 1) matrix and 4
be a posmve definite (7 — 5) X (n — s) matrix with z fixed value, say I,
for its determinant. It is required to find the value of both ¢ and A4 which

will minimize the supremum over [—1, 1] of

d(x: @, 4) = (fox) — QA A(fx) — QfilxD). L

Note that when s = n — 1 we have the origing! problem of Chebyshev. The
solution to the generalized problem arose from a problem in the optimal
design of experiments. It is arrived at fairly simply using certain “canonical
moments” of measurcs on [—1, 1]. The simplicity of the solution seems 1o
require minimizing over the matrix A as well as the polynomial part &,

A solution to the original problem using the canonical moments is described
in the Section 2. Section 3 describes the general soletion. Some examples
are considered in the final section together with some properties of the ceneral
solution.
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2. SOLUTION OF ORIGINAL PROBLEM

In this section we give a solution to the original problem using canonical
moments. Let g denote a vector of dimension » + 1 with a 1 in the last
component. The problem is then to minimize

sup | () @0

zel—1,1

with respect to q. If ¢ denotes an arbitrary probability measure on [—1, 1]
then (2.1) may be replaced by

sup [ (¢ ()2 dé(x) = sup ¢’ M(D) g,
where M(£) is the (n -+ 1) X (n + 1) matrix with elements
My = fxiﬂ dé(x), ij=0,1,..,n
Using game theoretic arguments it may be shown that
p = inf sup g'M(&) ¢ = syp inf ¢'M(£) ¢.
Letting &’ = (0,..., 0, 1) it then follows that
(e'q’
g M) q
= irgxf e ME)e.

~1 = infsu
P i sup

The last equality uses Schwartz’s inequality. Note for Iater reference that
equality is achieved for the supremum over ¢ if and only if

g =M eleM e 2.2)
The problem is now to minimize

| M1x(8)]

E’Mﬂl(f) e = —[JW—(SSI— 5 (2.3)

where | M(§)] and | My,(£€)] are the determinants of M(¢) and
Mu(® = [ £(0) i) dé).
The two determinants involved and their ratio have a simple expression

in terms of the canonical moments of £ For any probability measure &
on [—1,1]let ¢; = [ x! dé(x), i = 0, 1,.... Now let ¢, denote the maximum
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value of the kth moment over measures p having the same first & —
moments as £ That is, consider those p on [~1, 1] with | xf du(x) = ¢
for i =0, 1,...,k — 1; then ¢,* = sup, [ x* du{x). Similarly let ¢, denote
the corresponding minimum. The canonical moments are defined by

Cr — Cx_
-!:'k+ — i~ ?

Px = k=12...
Whenever ¢,~ = ¢;+ we leave the p, undefined. If we then let

T=q=1 n=qg.p, Jj=L2,..(p+ta=1,

the determinant | M(§)] is (see Skibinsky {4] or Studden (5]} a multiple of

ks .
T Mzeame)™ -1
2=1
The ratio in (2.3) then turns out to be a constant times

[T (aiames) ™

SRRt 2.4)
H?=1 (7?21'7—17121')7[”’1‘z @4
For s = n — 1 this quantity is the inverse of
an—1
Dan H 2.
=1
which is maximized for
P =1, i=1,2,.,20 —1,pg, =1 (2.5}

(The general solution is given in (3.4) below). Now the measure with density

1 -~
V1 — x2 (28)
has canonical moments p; = 1. See Skibinsky [4] or Karlin and Studden {2,
p. 120]. Since the moments ¢, = 1, ¢4 ,..., ¢, and p;, Ps »..., Py are in 1-1
correspondence, the minimizing measure &,_; corresponding to (2.5} has
its first 2n — 1 moments equal to those of the measure (2.6).

The solution to the original problem, namely that 7,,(x), with leading coeffi-
cient 1, minimizes (2.1) now follows. It can be shown using the corresponding
g = ¢, from (2.2) that the polynomial g, , f(x) is orthogonal to x%,
k =0, 1,..,n — 1, with respect to the measure in (2.6).

The measure £,_; corresponding to (2.5) is an ““upper principal represen-
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tation” for the measure (2.6). It concentrates mass proportional to
1:2:2:...:2:1 at the n + 1 zeros of (1 — x?) T,{x) = 0. This can be verified
by noting that §,_; provides a quadrature formula corresponding to the
measure (2.6) which is exact for polynomials of degree 2z — 1. This
quadrature formula is a classical Bouzitat formula of the second kind. (See
Ghizzetti and Ossicini [1].) It may also be verified by noting that the support
of £,_, must be the points where 7,%(x) attains its supremum, i.e., the zeros
of (I — x?) To(x) = 0. The corresponding weights at these points may be
obtained by matching up the first # moments and requiring total mass equal
to 1,

3. THE GENERAL SOLUTION

As indicated in the introduction the problem now is to find the Q and A
which will minimize the supremum on [—1, 1] of the quantity d(x; O, 4)
defined in Eq. (1.1). A considerable simplification is obtained if we use some
of the results from Karlin and Studden [2, p. 367, Theorem 8.1]. It is shown
there that the minimizing Q and 4 are of a certain form. For any £ we par-
tition the matrix M(£) according to f; and f, by defining

M) = My = [ fifide, My =[fifidf  and

My = My = [ fifidé

so that

) _ (Mn My
M(g) = (M21 Mﬂ)'

The minimizing Q is shown to be of the form
0 = Q&) = Mu(&,) M), 3.1)
where &, maximizes the determinant of the matrix
ATHE) = Mp(§) — My(8) Myy'(§) Mya(E). (EW))

The matrix 4 was normalized to have determinant equal to one. The mini-
mizing A is the matrix A(£,) suitably normalized. Since the normalization
does not change the problem we can restrict the matrix 4 to have determinant
equal to that of A(£)).

Now the identity

| M = | My | | My — Moy My My | (3.3
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shows that minimizing | 4(£)! is equivalent to minimizing {2.4) for general s.
The minimizing measure &, can readily be shown to have canonical moments

1 .
p= 3. i odd,
H
P = A I = I, 2.,.1..5,
n—i+1 _ | u
== *T:_‘er 1’ I =3 'J,' 1, $§ - 2,n.~ i — i,
=1 i =n, (3.4

One can now convert back to the measure £, , then to the ordinary moments
of & and then to the matrices Q and A. It is also possible (o evaluate the
ordinarv moments of £, used in Q and 4 directly from the canonical moments
given in (3.4). These relationships are described more fully in Skibinsky {4
or Studden [5] and relate the power series generating the ordinary moments
with its continued fraction expansion.
Tet 8, =1, §, = GosaPoi, i =1, 2,... and define ¥, recursively by
Uy=17=0,4L. andfori <j
)
LYZ'J = z 8}":——i+1U-1'—1,k= f:f = L 2.

h=i

oo
3]
[}

Rty

Whenever p; = } for i odd the ordinary moments ¢; = | x; df are then given
by

Coiq = 0, Co; = U“ . i = g, 2,..‘, i1 {33}

The relationship between the p; and the ¢; 13 slightly more involved when
the symmetry producing py;_; = % is not present.

The minimizing measure £, also has a simple description. See Studdan
{3]. The support of &, consists of the points 41 and the # — 1 zeres of

Py Hox) — 2, pr s a(x) (X)) = 0. 3.7

where

1 (n—s—1

2oy bl

o ==

and p, and ¢, are the derivatives of the Legendre and Chebyshev polynomi

Pi(x) and T{x) normalized so that their leading coefficients are one. {’

notv that T;(x) is the Chebyshev polynomia! of the second kind and P(‘,
= 1, 2,... are orthogonal to (1 — x?) dx, however we prefer to leave

in terms of Poand 7, .)
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The weights that £, assigns to each of the zeros x, of (3.7) and +1 are
given by

2 —

20 + 1 4 Use(xy)

i=0,1,.,n (3.3

where U,,(x) is the Chebyshev polynomial of the second kind,

sinfk - 1) 8

0 , x = cos 8.

Ux) =

4. ExaMPLES AND FURTHER PROPERTIES

As mentioned at the beginning of Section 3 the reduction of the minimizing
A and Q to the form (3.1) and (3.2} is given in Karlin and Studden [2]. The
same Theorem 8.1 on p. 367 also says that with the matrix A4 of the form
(3.2) the quantity d(x; Q, A), with the minimizing Q, = Q(£,) and 4, = A(§,),
satisfies the inequality

d(x; Qs, A) <n—s. @.1)

For s = n — 1 the expression d(x; Q,, A;) reduces to T,%*(x). Equation
(4.1) is then just the familiar fact that 7,%(x) < 1 for x e [--1, 1].

The polynomial T, is orthogonal to x* k = 0, 1,..., » — 1 with respect
to (2.6). Since the minimizing measure &,_, and (2.6) have the same moments
Co » €y yeers Can_y it fOllows that £, and x* are orthogonal with respect to &, .
There seems to be no analog to (2.6) for the general measure £, . However
if we define

(8ss150es 80) = AYH Sy — Qo)

then the polynomials g;, i = s 4+ L,..., n are orthonormal and orthgonal
to 1, x,..., x* with respect to the measure §,. See Kiefer [3} or Karlin and
Studden [2].

As a specific example consider the case » = 3. Using Eq. (3.4) we note
that all the odd canonical moments are equal to § while the even moments
are

P2 Py Ds
s=0 3/5 2/3 1
s=1 1/2 2/3. 1
s=2 172 172 1

A few further calculations using (3.6) and (3.5) give the ordinary moments.
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The odd moments ¢,;_, are zero while the even moments are given by the
following:

Cy

s=0 3/5 13/25 63/125
s=1 12 512 2972
s=2 12 38 1132

Cq Cg

Equaticn (4.1) for the three cases then gives

s = 2:
(O — §x) 16(x* — $x) < 1;
s=1
A W) <
s = 0

x ! 63 0 —-13\/ x
x—321 21 0 5 Q x""%) < 3.
x> —13 0 15

For s = {0 the measure £, has equal mass 1/(n + 1) on the zeros of
(1 —x) P(x) =0, which for n =3 gives x = +1 and x = 41 /3.
Fors = n — 1the measure ¢, ; has mass on the zeros of {1 — x?) To(x) = §,
which are x, = cos(vm/n) s = 0, 1,..., n. The interior zeros have weight i/a
while -1 have weight 1/2n each, For s = 1 and » = 3 there is weight 3
onx = +1/v6and tonx = 41.

As a final remark observe that &, and £, , give essentially equal weight
to the zeros of (1 — x?) P,(x) = Oand {I — x%) T,(x) = O, respectively. The
zeros of all the classical polynomials distribute themselves according to the
density given in (2.6). Therefore &, and £,_; both converge (weakly) to the
measure with density (2.6) as # — co. The measures £, , which also depend
on n, can be shown to lie between &, and £,_; so that they all converge to
(2.6) uniformly in s.
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